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1 Introduction 
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated 

points in a design space by performing steady-state computations at Lxed flight con- 
ditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration 
of interest. This “point analysis” provides detailed information about the flowfield, 
which aides an engineer in understanding, or correcting, a design. A point analysis is 
typically performed using high fidelity methods at a handful of critical design points, 
e.g. a cruise or landing configuration, or a sample of points along a flight trajectory. 
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Current research in CFD is aimed at extending the point analysis to a !!set analysis”, 
where CFD simulations are rapidly performed throughout the entire design space - 
varying both flight conditions and control surface deflections - in order to provide a 
broader picture of perforinance[l-3]. Such a set analysis is used both in initial design 
to quickly estimate performance, and in final design to augment traditional methods 
such as wind tunnel tests and aerodynamic modeling. The result of a set analysis 
is both a database containing the aerodynamic performance, and a broad view of 
critical flow features, such as shock strength and location. A typical CFD aerody- 
namic database generated from a set analysis currently will contain on the order of 
lo4 - lo6 datapoints, depending upon the problem requirements. In order to  manage 
such a large number of computations, automated tools are a necessity, not only for 
generating the data, but also harvesting meaningful results in a post process. 

The current work uses a Cartesian, embedded-boundary method[4] to automate 
the generation of a vehicle aerodynamic parameter study. The Cartesian method 
provides an efficient and robust mesh generation capability which can handle an 
arbitrarily-complex geometry description. Recently, a method to generate the water- 
tight surface triangulation required for Cartesian mesh generation directly from a 
CAD representation of the geometry has been developed[5]. This, combined with 
the Cartesian embedded-boundary method provides a robust and automatic mesh 
generation infrastructure which can be utilized through the design process. This 
meshing scheme is combined with a parallel, multi-level scheme for solving the steady- 
state Euler equations, either on shared- or distributed-memory architectures[G, 71. 

The current abstract briefly describes a modular infrastructure built to automati- 
cally perform complex parameter studies about complex configurations which include 
movable control surfaces. This modular system is built around pre-existing stand- 
alone applications (mesh generator, flow solver, force/moment calculator, etc.) , using 
scripts to provide a flexible “glue” between components. A general system of speci- 
fying and manipulating control surfaces using the Geometry Manipulation Protocol 
(GhlP) [8] is presented which automatically re-generates appropriate rigid-body con- 
figurations from a geometry and control surface description. A sample aerodynamic 
database including 4700 datapoints for a prototype autonomous biornorphic explorer 
for Mars[9] is included as a demonstration in the current abstract. This CFD database 
has been used to develop a neural-network guidance and control system for future 
flight tests. The proposed paper will also include a discussion of issues related to  gen- 
erating a parameter study using CFD, including steering the process to cluster around 
critical points (and neglect benign areas), integrating the process with a 3rd-party 
software database storage (e.g., SQL, ODBC, ...), exploiting symmetry (true and ap- 
proximate), and building and using multiple levels of fidelity (resolution, geometric, 
physical model, etc.) . The current discussion focuses on determining stability deriva- 
tives from static geometry, however future work will also target the incorporation of 
dynamic derivatives to provide rate of change data[lO]. 
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2 Component Infrastructure 

Figure 1: Schematic of the modular set of software components for performing an automated CFD 
parameter sweep. The stand-alone applications are shown in red, and the control scripts which glue 
the applications together in green. 

Figure 1 shows a schematic of the modular set of software components used for 
bidding z CFD aerodynamic database. The stand-alone applications are shown in 
red. and the control scripts which glue the applications together in green. More 
details on the specifics of the infrastructure will be provided after a brief overview. 
Note that several low-level support scripts which are common to all of the tools are 
not described. The entire parameter space is decomposed into a two-level hierarchy. 
At the lowest level is a veloczty space which contains the wind vector for each data 
point. This is characterized by the Mach number, angle of attack, and sideslip angle 
(Mm, a,  p). The next higher level contains a configurutzon space which represents all of 
the possible geometric configurations (control surface deflections, 6,) being tested. A 
single element of the configuration space contains all elements of the velocity space. 
The rationale for this decomposition is the modular re-use of components. Each 
element of the velocity space uses a fixed computational mesh, and is thus independent 
of the configuration space; which requires a modified geometry and mesh for each 
element. In other words, a parameter study can be computed using the velocity space 
in isolation, or as a lower-level to a broader configuration space, without requiring 
modification of the velocity space software components or architecture. The steerzng 
sofilmre links the configuration space. velocity space, and the results database into 



a coherent unit. The steering software monitors the results and determines which 
element of the parameter space to compute next. and this command is sent to  the 
configuration space control script (or directly to  the velocity space control script if 
only a single configuration is being examined). The configuration control then passes 
this to  the velocity space. This hierarchy of command control continues through the 
process, with each control script being responsible for handling input and output from 
their isolated section of the process. This is similar to an  object-oriented framework, 
though here a rigid object-oriented interface is not maintained. 

Since the elements of the process infrastructure are independent, each can evolve in 
isnl~tion For ~ m m p l e  the  steering software can be as simplistic as iterating through 
a uniform parameter space following the matrix element ordering, or as complex as 
leveraging 3rd-party neural-network toolkits. This flexibility is key to  providing a sys- 
tem which can grow as more experience is gained with building aerodynamic databases 
using CFD. Currently the steering software is intentionally straightforward. In the 
final paper a prototype of more intelligent decision-making tools will be provided. 

The emphasis of the current work in on an automated process, hence the user 
interfaces (UIs) are at the highest level of the component hierarchy. The analyst 
is charged with providing inputs to the system, and harvesting results, however the 
control of the process is the purview of the script system. This is necessary, as 
managing or steering tens of thousands of computations by hand is not practical or 
desirable. The understanding is that if more details are required about a certain 
isolated point, or set of points, the analyst will perform a point analysis at those 
critical points. 

One implicit assumption with the implementation of the infrastructure outlined 
in Fig. 1 is that there are no conflicts for CPU resources between the isolated parts of 
the process. In other words, it’s assumed that the lightweight processes of generating 
a mesh, or adding an entry into the results database, will not interfere with the 
more compute-intensive flow solver processes. In practice this is not a restrictive 
assuniption. Most compute resources either provide a front-end machine. or isolate a 
CPU or set of CPtTs, which are responsible for job scheduling, interactive tty sessions, 
etc. Since the cost of mesh generation, etc. is amortized over thousands of flow solver 
runs, and these tasks run concurrent with the flow solver, these lightweight processes 
do not adversely impact the overall parallel efficiency. 

2.1 Velocity Space 
The implementation of the velocity space control script is straightforward. The 

control script sets the velocity space parameters which are inputs for the flow solver, 
creates any required directory and file structures, and then executes the solver. After 
the solver finishes, the aerodynamic coefficients are returned as results of the control 
script to the process which executed the velocity space script. These coefficients are 
selected by the user, and can contain items such as hinge momeiits, bending nioments, 
etc., in addition to the 6 aerodynamic coefficients for the entire configuration. The 
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flow solver can execute either on a single processor or in parallel. Filling a parameter 
space involves computing many essentially identical problems, hence the parallelism is 
usually exploited on this coarser-grained level, not at the finer level of the flow solver, 
however there is nothing which prohibits combining both fine- and coarse-grained par- 
allel strategies. The Cartesian solver does not require case-specific inputs for each set 
of flow conditions, which greatly simplifies the velocity space sub-system. The solver 
contains a hierarchy of robustness levels, with each increasing level requiring more 
computing resources. The run strategy simply starts with the least robust scheme, 
and proceeds up the hierarchy if a computation is numerically unstable. At the high- 
est level of robustness it is always possible to  maintain numerical stability, though it 
is still possible to generate spurious results, for example when computing an inher- 
ently unsteady problem with a steady-state method. In practice these pathological 
cases are relatively easy to  filter, for example by monitoring convergence in residuals 
and computed aerodynamic loads. The velocity space control script is responsible 
for creating the flow solver runtime environment. Several interfaces are provided, 
including a simple interactive runtime process, job management directly through the 
portable batch system (PBS)[ll], and an interface to the web-based AeroDB job con- 
trol software[3]. Again, since the velocity space control scripts are self-contained they 
can evolve along with new runtime environments without effecting the remainder of 
the process. 

2.2 Configuration Space 

One powerful feature of the Cartesian method is the ability to  automatically 
create a computational mesh about varying geometric configurations, as has been 
demonstrated for computing bodies in relative motion[l2, 131 and aerodynamic shape 
optimization[l4]. Moving control surfaces within a static configuration space also re- 
quires the ability to "re-mesh" changing geometric configurations. The complete set 
of control surfaces and their possible deflections, or orientations, makes up the config- 
uration space. This configuration space is described using the Configspace datatype 
from the GLIP protocol. GhlP is a set of rules and datatypes for manipulating 
geometry for CFD applications. Only a brief overview is provided here, and more 
information can be found in [8? 1. Each Configspace is defined by a set of Parame- 
ters (control surfaces) , which are usually a single water-tight component (or groups of 
components) in the surface triangulation of the geometry. These Parameters take a 
finite number of discrete States, which are specified as rigid-body motions relative to 
the complete Configuration. The allowable rigid-body motions are extremely general 
and flexible. The GMP specification is stored in an XML file, which can be parsed 
by the application control script to determine the number of Parameters, how many 
States are specified for each Parameter, etc. The application control script for the 
configiiration space thus looks very similar to the velocity space script, except that 
the matrix of parameters are control surfaces and deflections, rather than changes to 
the velocity vector. The Configspace datatype also allows the specification of groups 
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of Parameters and States: for instance a coarse-, medium-, and fine-grained set of 
control surface deflections. A iiiicldleware layer between the GMP specification and 
the Cartesian applications actually does the work of translating the GMP Paranieters 
and States into a unique geometric configuration. 

2.3 Post-processing 

Post-processing a large aerodynamic database usually employs two strategies: cre- 
ating line or carpet plots of aerodynamic coefficients against the independent variables 
(M- - V I  a. 1 I 0. hp\. .-, or viewine: v and analyzing pre-defined flow visualization results, such 
as surface contours or cutting planes, using a matrix visualization strategy. Either 
of these methods may be used in an interactive or batch-processing mode depending 
upon the needs. The current process has been used successfully with both approaches, 
and sample results will be presented in tlie next section. 

One of the strengths of a modular process design is the ability to use 3rd-party 
tools when practical. These tools are used in many parts of the process in Fig. 1, 
e.g PBS, GMP, etc., including limited use of database software packages based on 
SQL or' the ODBC API. The storage and search requirements for a CFD aerody- 
namic database are relatively modest, so a tree-based database storage solution is 
not a necessity, however the use of a standardized database does have benefits Since 
database APIs are static and supported by a large user community, a CFD database 
can be portable across many application doniains rather than focused on a niche. For 
example, a database with an SQL or ODBC interface can easily be ported to web ser- 
vices Similarly, a supported API allows different doniains, such as G&C, structures, 
and aerodynamics to speak a common language, and build their individual tools on 
a known stable system. Further, the use of a database software package allows the 
results of a CFD aerodynamic database to evolve to include items such as flowfield 
images. documentation. or cutting planes, which would be inconvenient to implement 
into a simpler format. 

TWO methods of performing interactive flow visiialization with a CFD database 
have been explored. The first uses the Paravista software package[l5] to view a 
niatrix of parametric cases (c.f. Fig. 2). Here, rather than looking at a single solution, 
a range of solutions can be viewed and interrogated. Paravista allows the database 
to be stored locally or accessed remotely through a web server portal. A similar 
idea is the NASA hyperwall of computer displays and graphics cards to  interactively 
display a set of solutions[lG]. The user interacts with software which controls the 
entire hyperwall of displays rather than multiple windows within a single display. 

Another important aspect of utilizing a CFD aerodynamic database is performing 
a flight simulation by coupling a guidance system and 6-DOF package with the aero- 
dynamic performance data. An example is presented in Fig. 3, where an aerodyiiainic 
model built from a CFD database and theoretical considerations is compared to a live- 
fire missile test The trajectory predicted by tlie database is in excellent agrcenieiit 
with the flight-test data until the missile performs a high-g maneuver near time = 
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Figure 2: Screenshot of the Paravista parametric flow visualization package which allows multiple 
sc;!:itionj to be queried at once. Here changes in elevon deflection angle are running horizontally: 
with Mach number running vertically. 

15 sec., after which the two begin to diverge. The trajectory simulation using tradi- 
tional methods without access to CFD results did not closely match the experimental 
test trajectory. The memory and CPU requirements to perform such a trajectory 
simulation are modest. For a database containing lo6 points, all of the aerodynamic 
coefficients for a configuration require only 6 Mw7 so that direct addressing of the 
data is practical. One aspect of a trajectory simulation which must be accounted for 
throughout the process is the use of symmetry. Reflecting data, e.g. sideslip, when 
applicable is common, and can greatly reduce the computational work. This infor- 
mation must be preserved in some manner throughout the entire process however, so 
that the end-user of the data, a trajectory simulator or G k C  developer for example, 
can make use of it. Similarly, i t  is sometimes possible to  enforce a symmetry condition 
when the variations from a symmetric geometry are minor. This reduction leads t o  a 
small loss in accuracy, hosever can greatly reduce the total required number of cases. 
For example, Greiner plot and numbers w o d d  90  here. 
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Figure 3: 6-DOF trajectory siniulation using a CFD aerodynamic database compared to a live-fire 
missile test. 

3 BEES Flyer Example 
The bio-inspired engineering of explorations systems (BEES) flyer is envisioned 

as a small, autonoinous platform with sensing and control systems mimicking those 
of biological systems, for scientific exploration on the surface of Mars[9]. The current 
BEES flyer is a delta-wing with twin vertical tails aiid two elevons which provide pitch 
and roll control of the aircraft (c.f. Fig. 4). Since the flying wing design is unstable in 
pitch, the control system must coiistantly provide stability bji adjfistiiig the elevons. 
A neural-network-based adaptive flight control system is being developed to provide 
this, however accurate stability a,nd control (S&C) information is required in order 
to develop such a system. 

The Cartesian method described in Sec. 2 was used to compute a parametric set 
of solutions over the expected flight domain. S&C derivatives were extracted from 
the database and integrated with the neural flight control system. Each elevon was 
positioned independently, and both were allowed to range over [-lo, 201 deg. of pitch 
with 7 discrete settings. Eight Mach numbers, six angles of attack, and two sideslip 
angles were computed for a total of 4704 datapoints and 5 independent parameters. 
This database is a prototype for use in initial development of the neural network 
system, and to provide an overview of the flow features. As the BEES flyer design 
is refined, so can the database be augmented to  provide a more refined view of the 
aerodynainics near the expected design operating conditions. 

The BEES flyer geometry was obtained from a CAD solid model, and is shown 
with a cutting plane through the computational mesh in Fig. 5. Each mesh contains 
approximately 1.5ill cells, with a finest refinement of 1.5 mm. As the elevons change 
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Figure 4: Prototype of the BEES flyer geometry (c.f. Ref. [9] for more details). 

position, the Cartesian meshing scheme responds to  the change in surface definition 
and refines and coarsens the mesh appropriately. This causes the total number of 
cells in the mesh to vary around 1.5 million depending upon the elevon settings. 
All computations were run on a 256-CPU SGI Origin 2000 machine with 400 LfHz 
MIPS4 processors. Each individual datapoint required 9.3 hours of CPU time, and 
the entire database was filled in 9 days of wallclock time. During the database build 
the machine was shared with other users in a typical production environment. In 
fact, the machine was taken down for hardware maintenance twice during the 9 days 
without impacting the automated process. 

Examples of the solutions are shown in Fig. 6 for two transonic Mach numbers. 
The elevons are deflected asymmetrically. As the freestream Mach number increases 
the shock on the wing upper surface and engine canopy moves aft from the leading 
edge and gets stronger. The asymmetry in the aft loading due to the elevon deflections 
is also evident. The large drag clue to the strong shock adversely impacts the range of 
the vehicle, and hence the preliminary design cycle successfully identified a problem 
and solution early in the process. 
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Figure 5 :  BEES flyer geometry with a cutting plane through the Cartesian mesh. The triangulated 
surface geometry was generated directly from a CAD solid model. The Cartesian mesh generation 
automatically refines near large geometric curvature. 

4 Future Work 

A modular process for performing parametric studies about a configuration using 
a Cartesian method has been described. This process leverages existing stand-alone 
applications for performing isolated steady-state siinulatiolls, and glues them together 
with control scripts to provide the functionality for performing a set analysis. A novel 
part of this process is the automatic handling of general control surfaces deflections 
based upon simple, user-specified inputs. With the basic infrastructure in place and 
tested, improvements can be initiated. The proposed paper will include details of 
different steering strategies. Steering is a critical component of developing an aero- 
dynamic database as it directly impacts both efficiency, by optimizing the benefit 
for a fixed amount of work, and the accuracy by placing datapoints where there are 
abrupt changes in the S&C derivatives. An example from Ref. [3] of lift vs. Mach 
niinbcr and angle of attack for a liqiiicl glide-back booster is shown in Fig. 7. Except 

10 



. 

Mach Number Contours 
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(a) M ,  = 0.7, CY = 15.0" 

Mach Number Contours 

M- - 0.8 
a= 10.0' 
$ - 0.0' 

(b) &Im = 0.8, CY = 10.0" 

Figure 6: Surface Ivlach number for the EiI3E.S fiyer. Red is high, blue is iow. 

near Mach 1.0, the variation of the derivatives is relatively benign. Refining near the 
sonic line throughout the angle of attack range, and coarsening elsewhere would be 
more optimal. This example is straightforward, however the design space with control 
surface deflections becomes more complicated, and methods that can automatically 
adjust are desired. 

Another important topic is the merging or augmenting of databases using isolated 
refined datapoints. Two examples will illustrate the problem. The first is performing 
a parametric study early in the design cycie, and still leveraging that information 
later in the cycle after the design has changed. A second example is the use of 
multiple levels of fidelity, with the lower-fidelity tools being chosen for the majority 
of the design space, and higher-fidelity datapoints added at selected or critical areas. 
In both of these examples the idea of incrementally modifying the design response 
siirface with the higher-fidelity data is appealing. This approach can provide higher- 
fidelity performance at the cost of a low-fidelity analysis. The proposed paper will 
also include a discussion of this topic. 
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